Thermohaline mixing and gravitational settling in carbon-enhanced metal-poor stars

نویسندگان

  • Richard J. Stancliffe
  • Evert Glebbeek
چکیده

We investigate the formation of carbon-enhanced metal-poor (CEMP) stars via the scenario of mass transfer from a carbon-rich asymptotic giant branch primary to a low-mass companion in a binary system. We explore the extent to which material accreted from a companion star mixes with that of the recipient, focusing on the effects of thermohaline mixing and gravitational settling. We have created a new set of asymptotic giant branch models to determine what the composition of material being accreted in these systems will be. We then model a range of CEMP systems by evolving a grid of models of low-mass stars, varying the amount of material accreted by the star (to mimic systems with different separations), and also the composition of the accreted material (to mimic accretion from primaries of different mass). We find that with thermohaline mixing alone, the accreted material can mix with 16–88 per cent of the pristine stellar material of the accretor, depending on the mass accreted and the composition of the material. If we include the effects of gravitational settling, we find that thermohaline mixing can be inhibited and, in the case that only a small quantity of material is accreted, can be suppressed almost completely.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Light element abundances in carbon-enhanced metal-poor stars

We model the evolution of the abundances of light elements in carbon-enhanced metalpoor (CEMP) stars, under the assumption that such stars are formed by mass transfer in a binary system. We have modelled the accretion of material ejected by an asymptotic giant branch star on to the surface of a companion star. We then examine three different scenarios: one in which the material is mixed only by...

متن کامل

The effects of thermohaline mixing on low-metallicity asymptotic giant branch stars

We examine the effects of thermohaline mixing on the composition of the envelopes of low-metallicity asymptotic giant branch (AGB) stars. We have evolved models of 1, 1.5 and 2M from the pre-main sequence to the end of the thermally pulsing asymptotic giant branch with thermohaline mixing applied throughout the simulations. In agreement with other authors, we find that thermohaline mixing subst...

متن کامل

Lithium production by thermohaline mixing in low-mass, low-metallicity asymptotic giant branch stars

We examine the effects of thermohaline mixing on the composition of the envelopes of low-metallicity asymptotic giant branch (AGB) stars. We have evolved models of 1, 1.5 and 2M and of metallicity Z = 10 −4 from the pre-main sequence to the end of the thermal pulsing asymptotic giant branch with thermohaline mixing applied throughout the simulations. We find that the small amount of He that rem...

متن کامل

Carbon-enhanced metal-poor stars and thermohaline mixing

One possible scenario for the formation of carbon-enhanced metal-poor stars is the accretion of carbon-rich material from a binary companion which may no longer visible. It is generally assumed that the accreted material remains on the surface of the star and does not mix with the interior until first dredge-up. However, thermohaline mixing should mix the accreted material with the original ste...

متن کامل

The depletion of carbon by extra mixing in metal-poor giants

There is an apparent dichotomy between the metal-poor ([Fe/H] 6 −2) yet carbonnormal giants and their carbon-rich counterparts. The former undergo significant depletion of carbon on the red giant branch after they have undergone first dredge-up, whereas the latter do not appear to experience significant depletion. We investigate this in the context that the extra mixing occurs via the thermohal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008